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Orthogonal polynomials theory on a circular arc was apparently first developed
by N. I. Akhiezer, who announced his asymptotic formulas for orthogonal polyno-
mials on and off the support of orthogonality measure in a short note in Doklady
AN SSSR. We present here a rigorous exposition of Akhiezer's result and outline
some mild generalizations of the theory. � 1998 Academic Press

1. INTRODUCTION

The theory of orthogonal polynomials on the unit circle was created by
G. Szego� in the early twenties (cf. [15]) and developed afterwards by
G. Freud and Ja. L. Geronimus. It concerns polynomial system .n(+, z)
which satisfy

1
2? |

2?

0
.n(+, ei�) .m(+, ei�) d+=$m, n , m, n=0, 1, 2, ...,

where

.n(+, ei�)=}n(+) zn+lower degree terms, }n(+)>0,

and + is a positive Borel measure in [0, 2?) with infinite support. The
monic orthogonal polynomials 8n=}&1

n (+) .n=zn+ } } } are also of great
importance, as they do not alter under multiplication of the measure + by
a positive constant. What is more to the point, the measure + and the
whole system .n is fully determined by the sequence of complex numbers
[8n(0)]�

n=0 , which are usually called reflection coefficients.
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Over a period of nearly fifty years the theory was confined primarily to
a certain class of measures (know now as Szego� class) with the property

log +$ # L1 � :
�

k=1

|8k(+, 0)|2<�, (1)

where +$ is the Radon�Nikodym derivative of + with respect to Lebesgue
measure. One of the highlights of this theory is the Szego� asymptotic
formula for orthonormal polynomials (cf. [8, Theorem 3.4])

.n(+, z)=
zn

D� (+$, 1�z)
(1+o(1)), n � �, |z|>1 (2)

uniformly on compact subsets of the domain |z|>1 on the Riemann
sphere. Here D(+$, z) is the Szego� function, i.e., an outer function from H2

in the unit disk, corresponding to the limit values - +$. Under more restric-
tive assumptions on the function +$ (cf. [6, Corollary 1.2, p. 153]) and (93)
below) the asymptotic formula holds uniformly on the unit circle as well.

A truly major step towards extending Szego� 's theory was made by
E. A. Rahmanov [13], who replaced the logarithmic integrability condition
by the much weaker one, +$>0 almost everywhere. In [10, 11] P. Nevai
with his collaborators carried over a considerable part of Szego� 's theory to
an even more extensive class of measures (now known as Nevai class),
wherein limn � � 8n(+, 0)=0.

It is appropriate to mention here an old result by Geronimus (cf. [4,
Theorem 19.1]), according to which a (closed) support of a measure from
the Nevai class is the whole interval [0, 2?). It means that every measure,
having a proper subset, for instance, an interval [a, b]/[0, 2?), as its
support, lies outside the Nevai class. Surprisingly enough, the results con-
cerning the orthogonal polynomials of such type were apparently first
proved (announced, to be exact) by N. I. Akhiezer in the short note [1] in
Doklady AN SSSR as far back as 1960. Being highly quoted, this paper has
not been fully appraised by experts due to the lack of transparent proofs
of the statements therein. Although the theory of orthogonal polynomials
for general arcs in the complex plane (and even systems of arcs), including
asymptotic relations on and off the support of measure, has been developed
vastly at the moment due to H. Widom [16] and V. Kaliaguine [9] (see
also [12] for the special case of the circular arcs and [2] for Rahmanov's
theory on a circular arc), in my opinion, the results and especially the
method applied in [1] are still worth studying.

Our principal goal is to present a rigorous exposition of Akhiezer's
results, providing the reader with all necessary details, and to outline
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possible extensions of the method. The main object under consideration is
a weight function W on the arc

2: =
def [e i� : :���2?&:], 0<:<?, (3)

which satisfies

\(e i�) =
def W(ei�)

- cos2(:�2)&cos2(��2)
sin(��2)

# C(2:), 0<l�\(e i�)�L<�
(4)

(i.e., W is positive and continuous on 2: and has square root singularities
at both endpoints), and a corresponding system of orthonormal polyno-
mials .n .

The paper is organized as follows. In Sections 2 and 3 we consider a
special class of polynomials orthogonal on 2: . Section 4 contains an account
of the Bernstein�Szego� approximation method applied to the arc (3). The
asymptotic formulas for orthogonal polynomials, corresponding to the
weight functions of the form (4) on the arc 2: , are given in Section 5.

2. AKHIEZER'S ORTHOGONAL POLYNOMIALS

Special Conformal Mapping. Given a positive number 0<:<?, set

'=
?&:

4
, ;=i tan '=&;� ( |;|<1) (5)

and consider a rational function z=h(v) in the unit disk D=[ |v|<1]:

z=h(v) =
def (v&;)(;v&1)

(v+;)(;v+1)
=&

v&;
1&;� v

1+;� v
v+;

=
v&;
v+;

v&;&1

v+;&1 . (6)

The following properties of h(v) are of particular interest.

(1) h(v) is analytic in D"[&;] and has a simple pole at the point &;;

(2) ``individual values'': h(0)=1, h(;)=0, h(\i)=&1,

h(1)=&\1&;
1+;+

2

=&e&4i'=ei:, h(&1)=e&i:,

|h(x)|=1 for real x;

(3) h(v)=&b2(v)�b1(v), where the bi (v) are Blaschke factors, i=1, 2,
so that |h(ei|)|=1;
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(4) ``symmetry'': the function h(v) is defined on the whole complex
plane and satisfies

h(v&1)=h(v), h \1
v� +=(h(v))&1. (7)

In particular,

h(e&i|)=h(e i|), (8)

that is, the conjugate points on the unit circle are being stuck together;

(5) Let v=ei|. The equation e i�=h(ei|) can be solved for |
explicitly:

e2i|&(;+;&1) e i|+1=ei�(e2i|+(;+;&1) ei|+1),

e2i|&i(;+;&1) cot
�

2
ei|+1=0.

If 0<|<?, then

ei|=
tan(:�2)
tan(��2)

+i �1&\tan(:�2)
tan(��2)+

2

and hence

cos |=
tan(:�2)
tan(��2)

, sin |=�1&\tan(:�2)
tan(��2)+

2

=
- cos2(:�2)&cos2(��2)

cos(:�2) sin(��2)
.

(9)

Thus, while the point ei| runs over the unit circle, the point ei� sweeps the
arc 2: twice;

(6) h$(v)=2(;+;&1)
v2&1

(v+;)2 (v+;&1)2{0, v # D, (10)

that is, h(v) maps conformally the unit disk onto the domain C"2: .

It is reasonable to handle the arc 2: as a cut on the complex plane with
two borders: an interior border 2&

: and an exterior border 2+
: . When

the point v tends to ei|0, 0<|0<?, the image h(v) goes to ei�0 # 2&
: from

the inside of the unit disk. If the point v tends to e&i|0, then h(v) goes
to ei�0 # 2+

: from the outside of the unit disk. Indeed, putting !=
(tan ')&1&tan ', we have for v=rei|0, 0<r<1,
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h(v)=
v2+iv!+1
v2&iv!+1

,

|h(v)|2&1=
|v2+iv!+1|2&|v2&iv!+1|2

|v2&iv!+1|2 =&
4r(1&r2) ! sin |0

|v2&iv!+1|2 ,

as claimed. Hence the upper (resp. lower) semicircle corresponds to the
interior (resp. exterior) border of the cut 2: .

Consider an auxiliary conformal mapping v(x): D& � D, D&=
[ |w|>1] such that v(�)=&;:

v(w) =
def i&;w

w+i;
. (11)

The converse mapping is given by

w(v)=i
1+;� v
v+;

=i
1&;v
v+;

. (12)

The composition z=z(w)=h(v(w)) maps D& onto C"2: :

z=
cos(:�2) w2&w

w&cos(:�2)
=#w+ :

�

k=0

dk w&k, (13)

where

# =
def

lim
w � �

h(v(w))
w

= lim
v � &;

(v&;)(;v&1)
(v+;)(;v+1)

v+;
i(1+;� v)

=&
2;i

1&;2=cos
:
2

(14)

is the transfinite diameter of 2: .
The mapping w=w(z): C"2: � D& can be easily found from (13)

w(z) =
z+1+R(z)

2#
,

R(z) =
def �(z+1)2&4z cos2 :

2
=- (z&ei:)(z&e&i:), (15)

where that branch of the square root is chosen for which R(0)=1. To
calculate the interior (resp. exterior) boundary values w&(ei�) (resp.
w+(ei�)), notice that w\(&1)= �1 and hence

233ON AKHIEZER'S ORTHOGONAL POLYNOMIALS



w\(ei�)=
ei�+1\2iei(��2)

- cos2(:�2)&cos2(��2)
2#

=
ei(��2)

# {cos
�

2
\i �cos2 :

2
&cos2 �

2= . (16)

Putting

cos *=
cos(��2)
cos(:�2)

, 0�*�?, (17)

we finally get

w\(ei�)=exp {i \�

2
\*+= . (18)

The function h(v) on the unit circle generates the change of variables
formula, which plays a crucial role throughout the paper:

|
?

0
f� (ei|) d|=|

2?&:

:
f (ei�)

h(ei|)
h$(ei|) ei| d�

=|
2?&:

:

f (ei�) sin(:�2)

2 sin(��2) - cos2 (:�2)&cos2(��2)
d�, (19)

where f� (ei|) =
def f (h(ei|)). The weight function

W(ei�; 1) =
def sin(:�2)

2 sin(��2) - cos2(:�2)&cos2(��2)
, (20)

which occurs in (19)), may be regarded as the first kind Chebyshev weight
function for the circular arc 2: .

Akhiezer's Polynomials and Special Weight Functions. We proceed with
the following

Lemma 1. For nonnegative integers k, l the function

Pn(z)=wk(v) wl \1
v++wl (v) wk \1

v+ , z=h(v)

is a polynomial of degree n=max(k, l ) with a positive leading coefficient.

Proof. It is quite clear from (6) and (12) that

w(v) w \1
v+=h(v)=z, w(v)+w \1

v+=
z+1

#
. (21)
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The assertion of the lemma now follows by induction from identity

wn+1(v)+wn+1 \1
v+=\wn(v)+wn \1

v++\w(v)+w \1
v++

&w(v) w \1
v+\wn&1(v)+wn&1 \1

v++ .

and (21). K

Let 0(v) be a rational function, real on the real line. Set

.n(z; 0) =
def Kn {0(1�v)

1&;v
wn(v)+

v0(v)
v&;

wn \1
v+= , z=h(v), (22)

where Kn is a nonzero complex number. We want to specify the functions
0, which generate n th degree polynomials of z .n(z; 0) at least for large
enough n�n0(0). The examples below show that the set of such functions
is not empty.

Example 1. Let 0(v)=1. Since

v
v&;

=
i;

1+;2 w&1 \1
v++

1
1+;2 , (23)

the functions .n in (22) are polynomials of z for n�1 in light of Lemma 1.

Example 2. Let 0(v)=v&1. Much as in Example 1, we see that the .n

in (22) are polynomials of z for n�1.

Example 3. Let 0(v)=0\(v) =
def

(v\1)&1, so that

K&1
n .n(z; 0\)=

v
1\v {

1
1&;v

wn(v)\
1

v&;
wn \1

v+= .

The conclusion (with n0(0\)=1) follows by induction from the equality

K &1
n .n(z; 0\)=K &1

n&1.n&1(z; 0\) \w(v)+w \1
v++

&K &1
n&2.n&2(z; 0\) w(v) w \1

v+
for n�3 and direct (though lengthy) calculation for n=1, 2.
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Example 4. Let

0(v)=0q(v) =
def P(v)

(v2&;2)q ,

where P is a real polynomial of degree r=deg P�2q and P(\;){0.
Decompose P=P1 P2 in such a way that ri=deg Pi�q, i=1, 2. Then

0q(v)=
P1(v)

(v+;)q

P2(v)
(v&;)q= :

r1

j=0

Pj1

(v+;)q& j :
r2

j=0

Pj2

(v&;)q& j

=Q1 \ 1
v+;+ Q2 \ 1

v&;+ .

As P01=P1(&;){0, P02=P2(;){0, the polynomials Qi have degree
exactly q for i=1, 2. But

1
v+;

=Aw(v)+B,
1

v&;
=A� w&1 \1

v++B� ,

and (23) implies now

v
v&;

0q(v)=Q3(w(v)) Q4 \w&1 \1
v++ , deg Q3=q, deg Q4=q+1.

Thus by Lemma 1 the functions

.n(z; 0q)=Q5(w(v)) Q6 \w \1
v+++Q5 \w \1

v++ Q6(w(v))

are polynomials of z for n�n0(0q)=q+1.

It is obvious that any linear combination of the functions 0 from the
above examples generates by means of (22) polynomials of z for large
enough n. We shall impose two more restrictions on the function 0,
presuming that 0(v){0 for |v|�1, including infinity, and 0(x)=0(x) for
real x. Let M denote such a class of functions. In other words,

M =
def {0(v)=

P(v)
v=0(v&1)=&(v+1)=+(v2&;2)q ,

=0 , =\=0 or 1,
deg P=2q+=0+=&+=+= , (24)

where P is a real polynomial, which has no zeros outside D. The function
0 is thereafter assumed to belong to M.
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To make sure that .n in (22) is a polynomial of exactly degree n, let us
calculate its leading coefficient

}n(0) =
def

lim
z � �

.n(z; 0)
zn

= lim
v � &;

Kn {v0(v)
v&;

w&n(v)+
0(1�v)
1&;v

w&n \1
v+=

=Kn0 \&
1
;+

1+sin(:�2)
2 sin(:�2)

#&n{0 (25)

for n�n0(0). In what follows, we always take Kn=Kn(0) to satisfy

arg Kn(0)=arg 0 \1
;+ , (26)

so that }n(0)>0.
The main feature of the polynomials .n is their orthogonality on the arc

2: with respect to the special weight function

W(ei�; 0) =
def W(ei�; 1)

|0(ei|)| 2

=
sin(:�2)

2 sin(��2) - cos2(:�2)&cos2(��2) |0(ei|)| 2
, e i�=h(ei|),

(27)

which is well defined due to the property |0(ei|)|=|0(e&i|)|. Indeed, by
the change of variables formula we have for m=0, 1, ..., n&1 and
n�n0(0)

|
2?&:

:
K &1

n .n(ei�; 0) e&im�W(ei�; 0) d�

=|
?

0 {
0(e&i|)
1&;ei| wn(ei|)+

ei|0(ei|)
e i|&;

wn(e&i|)= w&m(e i|) w&m(e&i|) d|
|0(ei|)|2

=in&2m |
?

0 \
1&;ei|

ei|+; +
n&m

\1+;ei|

ei|&; +
m d|

(1&;ei|) 0(ei|)

+in&2m |
?

0 \
ei|&;
1+;ei|+

n&m

\ ei|+;
1&;ei|+

m ei| d|
(ei|&;) 0(e&i|)

=in&2m&1 |
T \

`&;
1+;`+

n&m

\ `+;
1&;`+

m d`
(`&;) 0(1�`)

=0,
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as 0(z){0 in C� "D. Under an appropriate choice of the constant Kn(0) the
polynomials .n are orthonormal,

1=
1

2? |
2?&:

:
|.n(e i�; 0)|2 W(ei�; 0) d�

=
}n(0)

2? |
2?&:

:
.n(ei�; 0) e&in�W(ei�; 0) d�

=}n(0) Kn
i&n

2?i |T \ `+;
1&;`+

n d`
(`&;) 0(1�`)

=}n(0) Kn
#n

0(1�;)

and the expression for |Kn | drops out immediately from (25) and (26):

|Kn |2=
2 sin(:�2)

1+sin(:�2)
, n�n0(0). (28)

Going back to the leading coefficients (25), we see that

}n(0) #n= }0 \1
;+} �

1+sin(:�2)
2 sin(:�2)

, n�n0(0). (29)

Note that the reflection coefficients an(0), corresponding to the weight
function (27), can be easily computed

an(0) =
def .n(0; 0)

}n(0)
=sin

:
2

e2it,

(30)

t=arg 0 \1
;+ , n�max[n0(0), 2],

that is, the reflection coefficients are constant for large enough n.

Example 5. For 0(v)=1 we have by (22) and (30)

a1(0)=sin
:
2

&cos
:
2

tan ', an(0)=sin
:
2

, n=2, 3, ....

Another interesting example is given by

0� (v) =
def v2&;2

v2&1
,
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wherein an(0� )=sin(:�2), n=1, 2, ... . As

|0� (ei|)|&2= } e2i|&1
e2i|&;2 }

2

=
4(1+sin(:�2))2

sin2 : \cos2 :
2

&cos2 �

2+ ,

the weight function W in (27) may be recognized as the weight function,
corresponding to Geronimus polynomials with positive reflection coeffi-
cients (cf. [5, formula (XI.26), p. 94]):

W(ei�; 0� )=2 \1+sin
:
2+

2
- cos2(:�2)&cos2(��2)

sin(��2)
.

It seems relevant to evaluate now the reversed V-polynomials .*n . By
using the second symmetry relation (7) for h and the similar one for w, we
obtain

.*n (z; 0)=zn.n(1�z� ; 0)=Kn {0(1�v)
1+;v

wn(v)+
v0(v)
v+;

wn \1
v+= , (31)

that very much resembles (22).
From this point on, we refer to the orthonormal polynomials .n in (22)

as Akhiezer's polynomials for the arc 2: .

Outer Functions for the Arc 2: . Let \(ei�) be a nonnegative measurable
function which satisfies the Szego� condition for the arc 2:

|
2?&:

:

|log \(ei�)|

- cos2(:�2)&cos2(��2)
d�<�. (32)

By an outer function for 2: we mean here a function g(z; \) which is
analytic and nonvanishing in C"2: , g(�; \)>0, and

| g(ei�; \)|&2=\(e i�) a.e. on 2: .

Such a function does exist under the Szego� condition (32) and can be easily
found from the well known outer function for the unit circle. Indeed, con-
sider the measurable function \~ (ei|)=\(h(ei|)) on the unit circle. By the
change of variables formula (19), we see that the Szego� condition (32) is
equivalent to the standard Szego� condition for \~ on the unit circle, that is,
log \~ # L1(T). We commence with the ordinary outer function

g~ (v; \~ )=exp { 1
4? |

?

&?

e i|+v
ei|&v

log
1

\~ (ei|)
d|+i$= .
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By the symmetry property (8) the equality \~ (ei|)=\~ (e&i|) holds and
hence

g~ (v; \~ )=exp { 1
4? |

?

0 \
1+ve&i|

1&ve&i|+
1+vei|

1&vei|+ log
1

\~ (ei|)
d|+i$=

=exp { 1
2? |

?

0

1&v2

1+v2&2v cos |
log

1
\~ (ei|)

|+i$= .

A real constant $ is chosen to meet g~ (&;; \~ )>0. Computing

1&;2

1+;2+2; cos |
=

1
sin(:�2)+i cos(:�2) cos |

=
sin(:�2)&i cos(:�2) cos |

sin2(:�2)+cos2(:�2) cos2 |

shows that

$=
1

2? |
?

0

cos(:�2) cos |
sin2(:�2)+cos2(:�2) cos2 |

log
1

\~ (ei|)
d|.

Therefore,

g~ (v; \~ )=exp { 1
2? |

?

0 \
1&v2

1+v2&2v cos |
+i

cos(:�2) cos |
sin2(:�2)+cos2(:�2) cos2 |+

_log
1

\~ (ei|)
d|= . (33)

It is clear that the function g(z; \)= g~ (v; \~ ), z=h(v), is an outer function
for 2: . Thus by (9) and (19) we have

g(z; \)=exp { 1
2? |

?

0

1&v2

1+v2&2v cos |
log

1
\~ (ei|)

d|=
_exp { i

4? |
2?&:

:
log

1
\(ei�)

cos(��2) d�

- cos2(:�2)&cos2(��2)= . (34)

The function g~ # H2 and thereby admits boundary values a.e. on the unit
circle. The same is then true for g and the arc 2: . We denote by g\(ei�; \)
the boundary values of g on 2: from outside and inside of the unit disk,
respectively. They can be calculated by invoking the standard method for
computing the limit values of Poisson's integral and its conjugate function
(cf., e.g., [8, Chap. 1.15] for the unit circle case). In our situation the
corresponding formula takes on the form
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g\(ei�1; \)=
1

- \(ei�1)
exp { i

4? |
2?&:

:
log

1
\(ei�)

cos(��2) d�

- cos2(:�2)&cos2(��2)=
_exp {\

i
4?

v.p. |
2?&:

:
log

1
\(ei�)

_�cos2(:�2)&cos2(�1 �2)
cos2(:�2)&cos2(��2)

d�

sin((�&�1)�2)= (35)

for �1 # 2: . The latter integral converges absolutely whenever \(ei�) is
positive and satisfies the Lipschitz condition with some positive exponent.
We shall return to this relation in more detail later in Section 5.

Example 6. For 0 # M, let

\(ei�; 0)=\0(e i�) =
def sin(:�2)

2 sin2(��2) |0(ei|)|2 , ei�=h(e i|) # 2: . (36)

The function \ obviously satisfies the Szego� condition (32). Direct calcula-
tion based on (6) gives

sin2 �

2
=

2&h(ei|)&h&1(ei|)
4

=
4 sin2(:�2)

(1+sin(:�2))2

1
(1&;2e2i|)(1&;2e&2i|)

.

Set

g0(z) =
def A0

0(1�v)
1&;2v2 , A0=

2 - 2 sin(:�2)
1+sin(:�2)

eiu, (37)

where a real constant u is chosen to meet g0(�)>0: u=arg 0(1�;). By
the assumption on the zeros of 0 the function g0 is analytic and non-
vanishing in C"2: . For its boundary values the equality

| g0(e i�)| &2=|A0 |&2 (1&;2e2i|)(1&;2e&2i|)
0(ei|) 0(e&i|)

=\0(e i�) (38)

holds, that is, g0(z)= g(z; \0).

The relation (cf. (27))

W(ei�; 0)=\0(ei�)
sin(��2)

- cos2(:�2)&cos2(��2)
(39)

plays a key role throughout the rest of the paper.
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We need hereafter another, distinct from (29), expression for the leading
coefficient }n(0). Put in (37) v=; � z=0,

}0 \1
;+}=(1&;4) |A0 | &1 | g(0; \0)|. (40)

In view of (33) and (34) the equality

| g(0; \0)|=| g~ (;; \0
t )| exp { 1

2? |
?

0
R \ 1&;2

1+v2&2; cos |+ log
1

\0
t(e i|)

d|=
is valid. Since

R \ 1&;2

1+v2&2; cos |+=
sin(:�2)

sin2(:�2)+cos2(:�2) cos2 |
=

sin2(��2)
sin(:�2)

,

we see by the change of variables formula (19) that

| g(0; \0)|=exp { 1
4? |

2?&:

:

sin(��2)

- cos2(:�2)&cos2(��2)
log

1
\0(ei�)

d�= .

The desirable expression emerges now from (29) and (40): for n�n0(0)

}n(0) #n=
1

- 1+sin(:�2)
exp { 1

4? |
2?&:

:

sin(��2)

- cos2(:�2)&cos2(��2)

_log
1

\0(ei�)
d�= . (41)

3. ASYMPTOTIC RELATIONS FOR AKHIEZER'S POLYNOMIALS

Asymptotics Off the Arc 2: . An explicit expression (22) for Akhiezer's
polynomials makes it possible studying their asymptotic behavior.

Let z # C"2: � |v|<1. Then

.n(z; 0)=4n(v; 0)+4n \1
v

; 0+ , (42)

where in view of Example 6

4n(v; 0)=Kn
0(1�v)
1&;v

wn(v)

=KnA&1
0 (1+;v) g(z; \0) wn(v).
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It remains to express this value through the variable z. As far as w(v) goes,
it is displayed in (15). By (26), (28), and (37) we have

KnA&1
0 =

- 1+sin(:�2)
2

. (43)

To express v in terms of z, notice that the simple manipulation with (6) and
(12) provides

v(z&1)=&2v2 1+;2

(v+;)(1+;v)
=

2
i

w(v)&
z+1

;
,

so that

v=
2
i

w(v)
z&1

+i
1+sin(:�2)

cos(:�2)
z+1
z&1

.

Hence (cf. (15))

v=
- (z+1)2&4#2z&(z+1) sin(:�2)

i#(z&1)
=

R(z)&(z+1) sin(:�2)
i#(z&1)

(44)

and

1+;v=
1

1+sin(:�2)
z&1&2 sin(:�2)+R(z)

z&1
. (45)

If the function 0 is fixed, i.e., it does not depend on n, the second term
in the right hand side of (42) decays exponentially uniformly on compact
sets inside C"2: , that leads to the following.

Proposition 2. Given 0 # M the asymptotic relation

.n(z; 0)=
z&1&2 sin(:�2)+- (z+1)2&4#2z

2 - 1+sin(:�2)(z&1)
g(z; \0) wn(v)+=n(z),

(46)

w(v)=
z+1+- (z+1)2&4#2z

2#

holds, where =n decays exponentially uniformly on compact sets inside C"2:

as n � �.

Remark 3. Keeping in mind further considerations, we should stress
that in the sequel the function 0 does depend on n, so we should be much
more accurate while evaluating the second term in (42).
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Asymptotics on the Arc 2: . The passage to the limit in (22), when v
goes to the unit circle, needs to be clarified. Let v � ei|, 0<|<?. As
it was shown at the beginning of Section 2, now z � ei� # 2&

: and
g(z; \0) � g&(ei�; \0), which is the interior boundary value for the outer
function g(z; \0). Hence,

4n(ei|)=KnA&1
0 (1+;ei|) g&(ei�; \0) wn(ei|).

By (43), (45), and (17), taking an appropriate sign for the square root (see
discussion before the formula (16)), we have

KnA&1
0 (1+;ei|)=

ei�&1&2 sin(:�2)&2iei(��2)
- cos2(:�2)&cos2(��2)

2 - 1+sin(:�2) (ei�&1)

=
i sin(��2)&sin(:�2) ei(��2)&i sin * cos(:�2)

2i sin(��2) - 1+sin(:�2)

=
cos(:�2) e&i*&(1+sin(:�2)) e&i(��2)

2i sin(��2) - 1+sin(:�2)
.

Applying (18), we get

4n(ei|)=
cos(:�2) e&i*&(1+sin(:�2)) e&i(��2)

2i sin(��2) - 1+sin(:�2)

_exp {in \�

2
&*+= g&(ei�; \0).

In a similar fashion, we obtain the expression for 4n(e&i|).

Proposition 4. For ei� # 2: the equality

.n(e i�; 0)=
e&i*

- 1&sin(:�2)&e&i(��2)
- 1+sin(:�2)

2i sin(��2)

_exp {in \�

2
&*+= g&(ei�; \0)

+
ei*

- 1&sin(:�2)&e&i(��2)
- 1+sin(:�2)

2i sin(��2)

_exp {in \�

2
+*+= g+(ei�; \0) (47)

is valid.
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4. BERNSTEIN�SZEGO� METHOD FOR A CIRCULAR ARC

Approximation by Special Weight Functions. The approximation of an
arbitrary weight function W by special weight functions Wq , which makes
it possible studying the asymptotic behavior of orthonormal polynomials
.n(z; W) by comparing them to orthonormal polynomials .n(z; Wq),
underlies the Bernstein�Szego� method. In the case of a circular arc such
special weight functions take on the form (27) with 0 # M. The asymptotic
behavior for .n(z; Wq) was exhibited in Section 3.

Given an arbitrary weight function W on the arc 2: , let

\(ei�) =
def W(ei�)

- cos2(:�2)&cos2(��2)
sin(��2)

(48)

(cf. (39)). We assume in what follows that

\ # C(2:), 0<l�\(e i�)�L<�. (49)

By the modulus of continuity of a function p on 2: we always mean the
function

|(x, p) =
def

max
|�1&�2|�x

| p(e i�1)& p(ei�2)|,

where the maximum is taken over all pairs (�1 , �2) from the interval
[:, 2?&:]. The same notation is kept for continuous functions on the
whole unit circle.

Along with the function \, consider an auxiliary function

f (ei�) =
def sin(:�2)

2 sin2 (��2) \(ei�)
=

sin(:�2)

2 sin(��2) - cos2(:�2)&cos2(��2) W(e i�)
,

(50)

which is positive and continuous on 2: by (49). Next, it is convenient to
go over from the arc 2: to the unit circle (cf. (6) and (11)):

ei�=h(ei|), f (ei�)=F(ei|),
(51)

ei|=v(ei!), F(ei|)=G(ei!).

Due to the property (10) of h$(v) such transitions do not alter moduli of
continuity essentially (in the sense of order):

|(x, G)�C0|(x, F )�C1 |(x, f )�C2|(x, \). (52)
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Throughout the rest of the paper Ck , k=0, 1, ..., stand for positive con-
stants, which depend only on : and given weight function W. It is con-
venient to note here that by the symmetry property (8) we have

F(ei|)=F(e&i|), G(ei!)=G(ei!&), (53)

where v(ei!&)=e&i|.
Given a positive integer n�4, set

q =
def _n

2&&1. (54)

We can approximate a positive and continuous 2?-periodic function
G� (!) =

def
- G(e i!) uniformly by positive trigonometric polynomials (e.g., by

Jackson's polynomials)

0<Sq(!)= :
q

k=&q

Akeik!, A&k=Ak ,

that is,

&G� (!)&Sq(!)&��12| \ 1
q+1

, G� +�C3| \1
n

, \+ . (55)

Here & }&� denotes the uniform norm on the unit circle or on the arc 2:

(that is always clear from the context). Note that with no loss of generality
we may presume

G� (!)�Sq(!)�C4 . (56)

It follows from (51) that

0<Sq(!)= :
q

k=&q

Ak \i
1&;ei|

ei|+; +
k

=
P2q(ei|)

(e i|+;)q (1&;ei|)q=
P2q(ei|)

eiq| |1&;ei||2q . (57)

By F. Riesz's theorem the positive trigonometric polynomial P2q(ei|) e&iq|

in (57) admits a representation of the form

P2q(ei|) e&iq|=B2
q `

q

&=1

|e i|&c (q)
& |2, |c (q)

& |<1, Bq>0 (58)
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(some of the c (q)
& may be zeros). Put

Hq(v)=Bq(v+;)&q `
q

&=1

(v&c (q)
& ), v # C.

Then Sq(!)=|Hq(ei|)|2 and the function 0q(v) =
def Hq(v) H� q(v) satisfies

0q(v)=
B2

q

(v2&;2)q `
q

&=1

(v&c (q)
& )(v&c (q)

& )=
T2q(v)

(v2&;2)q , (59)

where as usual H� q(v)=Hq(v� ). We see that 0q is of the form (24) (cf. Exam-
ple 4 in Section 2). Besides, 0q(x)�0 for real x and all zeros of 0q lie
inside D, so that 0q # M. Next

|0q(ei|)| 2=0q(ei|) 0q(e&i|)=|Hq(ei|) Hq(e&i|)|2=S 2
q(!). (60)

We are now in a position to turn to the approximation of the functions
f and \. By (55), (53), and (56), we get

& f (ei�)&|0q(ei|)|2&��C5| \1
n

, \+ (61)

and

f (ei�)�|0q(ei|)| 2�C 2
4 . (62)

The latter inequality enables one to evaluate the reciprocal values. Indeed,

} 1
f (e i�)

&
1

|0q(ei|)| 2 }�| f (ei�)&|0q(ei|)|2|
| f (ei�)|2 ,

and as the moduli of continuity of f and \ have the same order, we come
to the conclusion

&\(ei�)&\(ei�; 0q)&��C6| \1
n

, \+ , (63)

where notation

\(ei�; 0q)=\q(ei�) =
def sin(:�2)

2 sin2(��2) |0q(ei|)|2 (64)

is consistent with (36). The inequality \(ei�; 0q)�\(e i�), which proves use-
ful later on, is a simple consequence of (62) and (50).
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We can modify the inequality (63) if we set

W(ei�; 0q)=Wq(ei�) =
def \q(ei�)

sin(��2)

- cos2(:�2)&cos2(��2)
(65)

(cf. (39)). Namely

"1&
\q(ei�)
\(ei�) "�

="1&
Wq(ei�)
W(ei�) "�

�C7| \1
n

, \+ . (66)

Due to (62) the similar relation holds for the reciprocal values

"1&
\(ei�)
\q(ei�)"�

="1&
W(ei�)
Wq(ei�)"�

�C8| \1
n

, \+ . (67)

Remark 5. The above consideration shows that

lim
n � �

&\\1
q (ei�)&\\1(e i�)&�=0

as long as limn � � q(n)=� (no rate of convergence can be claimed in
general).

Bernstein�Korous Identity. Let [.n, j (z, + j)=}n, j zn+ } } } ]�
0 be ortho-

normal polynomials systems with respect to measures + j , j=1, 2. We recall
the identity, connecting polynomials .n, 1 and .n, 2 . Expansion of the poly-
nomial .n, 1 over the system [.k, 2]n

0 gives

.n, 1(z)= :
n

k=0

dk, n.k, 2(z), dk, n=
1

2? |
2?

0
.n, 1(ei�) .k, 2(ei�) d+2 ,

whence it follows that

.n, 1(z)=
1

2? |
2?

0
.n, 1(ei�) :

n

k=0

.k, 2(z) .k, 2(ei�) d+2

=
1

2? |
2?

0
Kn+1, 2(z, ei�) .n, 1(ei�) d+2

=
1

2? |
2?

0
Kn, 2(z, e i�) .n, 1(ei�) d+2

+
1

2? |
2?

0
.n, 2(z) .n, 1(ei�) .n, 2(ei�) d+2 .
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Here

Km, 2(u, v) =
def

:
m&1

k=0

.k, 2(u) .k, 2(v)

=
.*m, 2(u) .*m, 2(v)&.m, 2(u) .m, 2(v)

1&uv�
(68)

(the latter is known as the Christoffel�Darboux formula, see [8, p. 41,
formula (1)]). By the orthogonality property, we have

1
2? |

2?

0
.n, 1(ei�) .n, 2(ei�) d+2=

}n, 1

2? |
2?

0
ein�.n, 2(ei�) d+2=

}n, 1

}n, 2

,

so that

.n, 1(z)=
1

2? |
2?

0
Kn, 2(z, ei�) .n, 1(ei�) d+2+

}n, 1

}n, 2

.n, 2(z). (69)

This equality can be rewritten in terms of monic polynomials as

8n, 1(z)&8n, 2(z)=
1

2? |
2?

0
Kn, 2(z, ei�) 8n, 1(ei�) d+2

=
1

2? |
2?

0
Kn, 2(z, e i�) 8n, 1(ei�)(d+2&d+1). (70)

We shall handle formula (70) in the following situation:

8n, 1(z)=8n(z)��monic orthogonal polynomials with respect to the
weight function W(ei�) on 2: ;

8n, 2(z)=8n(z; 0q)��monic orthogonal polynomials with respect to
the weight function Wq(ei�) (65).

Finally, we arrive at the relation, which is referred to as the
Bernstein�Korous identity

8n(z)&8n(z; 0q)

=
1

2? |
2?&:

:
Kn(z, ei�; 0q) 8n(ei�) W(ei�) \Wq(ei�)

W(ei�)
&1+ d�. (71)
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5. ASYMPTOTIC RELATIONS FOR GENERAL
ORTHOGONAL POLYNOMIALS

Asymptotics for the Leading Coefficient. We begin with the weight func-
tion W on 2: , which satisfies (48), (49), and the corresponding sequence
of monic orthogonal polynomials 8n=8n(W). According to the well
known extremal property of orthogonal polynomials the relation

}&2
n (W)=

1
2? |

2?&:

:
|8n(ei�, W)| 2 W(ei�) d�

=min
1

2? |
2?&:

:
|P(ei�)|2 W(ei�) d�

holds for the leading coefficient }n=}n(W), where the minimum is taken
over all monic polynomials of degree n. Therefore the asymptotic behavior
of }n is of particular interest. The Bernstein�Szego� method developed in
Section 4 provides a technique for studying this problem.

Denote

& f &2
W =

def 1
2? |

2?&:

:
| f (ei�)|2 W(ei�) d�.

Then, for the approximating sequence of weight functions Wq (65) and
monic orthogonal polynomials 8n(z; 0q), we have

&8n &2
W�&8n(0n)&2

W

=&8n(0q)&2
Wq

+
1

2? |
2?&:

:
|8n(ei�, 0q)|2 Wq(ei�) \ W(e i�)

Wq(e i�)
&1+ d�.

It follows now from (67) that

&8n &2
W �&8n(0q)&2

Wq
+"1&

W(ei�)
Wq(ei�)"�

&8n(0q)&2
Wq

=&8n(0q)&2
Wq \1+C8| \1

n
, \++ .

In exactly the same way, we get by (66)

&8n(0q)&2
Wq

�&8n(0q)&2
W \1+C7 | \1

n
, \++ .
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Thus, we come to the relation

} }n

}n(0q)
&1 }�C9| \1

n
, \+ , (72)

which in turn yields limn � � }n �}n(0q)=1.
Recall now that explicit expression (41) is known for the leading coef-

ficients }n(0q) for n�q+1 (the latter inequality holds thanks to the
appropriate choice of q in (54)). The final result drops out immediately
upon taking n � �

lim
n � �

}n#n=
1

- 1+sin(:�2)

_exp { 1
4? |

2?&:

:

sin(��2)

- cos2(:�2)&cos2(��2)
log

1
\(ei�)

d�= . (73)

Note that the asymptotic behavior of the leading coefficients in a much
more general setting was investigated in [16, Theorem 12.3; 9, Theorem 1].

Asymptotics Off the Arc 2: . Let us first make sure that all zeros of the
polynomials .n are being attracted to the arc 2: . The latter means that
given an arbitrary compact set K # C� "2: , the polynomials .n(z; 0q){0,
z # K for n�n0(K) (cf. [2, Remark before Lemma 4]). Indeed, denote

Uq(v) =
def v0q(v)

0q(1�v) \
w(1�v)
w(v) +

n&1

.

By (22) we have

.n(z; 0q)=Cn
0q(1�v)
1&;v

wn(v) {1+
v+;
1+;v

Uq(v)= . (74)

The function Uq is easily estimated with the help of (59) and (12)

0q(v)
0q(1�v)

=\1&;2v2

v2&;2 +
q

`
q

&=1

(v&c (q)
& )(v&c (q)

& )

(1&c (q)
& v)(1&c (q)

& v)
,

whence it follows that

|Uq(v)|� } 1&;2v2

v2&;2 }
q

}w(1�v)
w(v) }

n&1

= }w(1�v)
w(v) }

n&q&1

. (75)
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Let K� be the compact set inside D such that K=h(K� ). It is clear that

}w(1�v)
w(v) }�$(k)<1, v # K� ,

and hence

|Uq(v)|�$n&q&1(K), v # K� . (76)

The choice of q (54) implies exponential decay of Uq uniformly inside D.
The desired property of zeros of .n(z; 0q) now stems from (74) and the
fact that 0q {0 outside D.

Our further consideration depends heavily on the Bernstein�Korous
identity (71), which can be paraphrased in terms of orthonormal polyno-
mials as

.n(z)&
}n

}n(0q)
.n(z; 0q)

=
1

2? |
2?&:

:
Kn(z, ei�; 0q) .n(ei�)(Wq(ei�)&W(ei�)) d�. (77)

Dividing through by .n(z; 0q) and invoking the Christoffel�Darboux for-
mula (68), we obtain

.n(z)
.n(z; 0q)

&
}n

}n(0q)

=
1

2? |
2?&:

: \.*n (z; 0q)
.n(z; 0q)

.*n (ei�; 0q)&.n(ei�; 0q)+
_

.n(ei�) W(ei�)
1&ze&i� \Wq(ei�)

W(e i�)
&1+ d�. (78)

Our goal here is to study the asymptotic behavior of orthogonal polyno-
mials .n on K. To this end note that by the Schwarz inequality, applied to
(78), and in view of (66), we have for z # K

} .n(z)
.n(z; 0q)

&
}n

}n(0q) }
2

�C10(K) | \1
n

, \+
_|

2?&:

: }.*n (z; 0q)
.n(z; 0q)

.*n (ei�; 0q)&.n(ei�; 0g)}
2

W(ei�) d� (79)
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(one has to keep in mind that the .n are orthonormal with respect to W).
The ratio in the right hand side of (79) is easily taken care of due to the
explicit expressions for Akhiezer's polynomials and their V-reversed, so for-
mula (31) comes into play now. In fact,

}.n*(z; 0q)
.n(z; 0q) }= } 1+((v&;)�(1&;v)) Uq(v)

1+((v+;v)�(1+;v)) Uq(v) } }
1&;v
1+;v } ,

and by (76)

.*n (z; 0q)

.n(z; 0q)
=O(1), n � � (80)

uniformly on K.
Next, it is not hard to show that the sequence .n(z; 0q) is uniformly

bounded on the arc 2: . Indeed, it is immediate from (22), (28), and (62)
that

|.n(ei�; 0q)|�|Kn(0q)| |0q(ei|)| ( |1&;ei||&1+|ei|&;|&1)�C11 .

Finally, taking into account (72), we come to the relation

} .n(z)
.n(z; 0q)

&1 }�C12(K) | \1
n

, \+ , z # K. (81)

We are now within easy reach of establishing the asymptotic formula for
the orthonormal polynomials .n . Although we are no longer at liberty to
apply Proposition 2 directly (cf. Remark 3), due to the relations (74) and
(76) the polynomials .n(z; 0q) behave now exactly as in Section 3. It
remains only to note that by (63) and (34) the relation

lim
n � �

g(z; \q)
g(z; \)

=1

holds uniformly on K, where

g(z; \) =
def

exp { 1
2? |

?

0

1&v2

1+v2&2v cos |
log

1
\(h(ei|))

d|=
_exp { i

4? |
2?&:

:
log

1
\(ei�)

cos(��2) d�

- cos2(:�2)&cos2(��2)= . (82)

Eventually, we reach the following conclusion, which may be recognized
as a circular arc analogue of the fundamental Szego� asymptotic formula (2)
and which turns into (2) for :=0.
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Theorem 6. Let an arbitrary weight function W on the arc 2: satisfy
(48) and (49). Then, for the orthonormal with respect to W polynomials .n

the asymptotic formula

.n(z)=
z&1&2 sin(:�2)+- (z+1)2&4#2z

2 - 1+sin(:�2) (z&1)
g(z; \) wn(z)(1+o(1)),

(83)

w(z)=
z+1+- (z+1)2&4#2z

2#

holds uniformly on compact subsets of C"2: .

The following result is a straightforward consequence of Theorem 6,
which is yet worth mentioning.

Corollary 7. For weight functions W under consideration the relative
asymptotic formula

lim
n � �

.n+1(z)
.n(z)

=
z+1+- (z+1)2&4#2z

2#

holds uniformly inside C"2: .

Under the much more general Rahmanov's condition such a limit rela-
tion was established in [2, Theorem 1].

Theorem 6 provides the asymptotic formula for the reflection coefficients
an (W).

Theorem 8. The reflection coefficients an (W), which correspond to
weight function W (48), (49) satisfy

lim
n � �

an(W)=sin
:
2

e i{,

{=
1

2? |
2?&:

:
log

1
\(ei�)

cos(��2) d�

- cos2(:�2)&cos2(��2)
.

Proof. It is easily follows from (81) with z=0 and (72) that

lim
n � �

an(W)
an(0q)

=1, an(0q)=sin
:
2

e2itq, tq=arg 0q \1
;+ (84)
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(cf. (30)). To handle the expression for an(0q), we shall go back to Exam-
ple 6, Section 2, wherein the function (cf. (37))

gq(z) =
def 2 - 2 sin(:�2)

1+sin(:�2)
0q(1�v)
1&;2v2 exp(itq) (85)

is shown to be the outer function with particular limit values (64). From
(85) we derive that

an(0q)=sin
:
2

gq(0)
| gq(0)|

.

The latter quantity can be extracted from the formula for outer functions
(34)

an(0q)=sin
:
2

exp { i
2? |

2?&:

:
log

1
\q(ei�)

cos(��2) d�

- cos2(:�2)&cos2(��2)= .

The statement is now immediate from (84) and inequality (63).1 K

Remark 9. Another way of the proving Theorem 8 is a direct computa-
tion of the limit

lim
n � �

an(W)= lim
n � �

,n(0)
}n

,

based on the formulas (83), (73) and the change of variables formula (19).

Remark 10. The Bernstein�Szego� approximation method provides a
rate of convergence in Theorem 8

}an(W)&sin
:
2

ei{ }�C| \1
n

, \+ .

Asymptotics on the Arc 2: . We begin with the estimate for the
derivative 0$q(v) on the unit circle. By (59) and (62) we have

} T2q(e i|)
(e2i|&;2)q }�C4 , |T2q(ei|)|�|T(ei|)|, T(v) =

def C4(v2&;2)q.
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1 The relations (85) and (63) actually imply the uniform convergence of the sequence
0q (1�v) on compact subsets of D.



According to Bernstein's theorem (cf. [3; 14, Sect. 5.1.3, Theorem 1,
p. 387])

|T $2q(ei|)|�|T $(e i|)|=2C4q |e2i|&;2| q&1.

Next,

0$q(v)=
T $2q(v)

(v2&;2)q&2qv
T2q(v)

(v2&;2)q+1

=
T $2q(v)

(v2&;2)q&
2qv

v2&;2 0q(v),

so that

|0$q(ei|)|�2
2C4q

|e2i|&;2|
�C13 n. (86)

From this point on we assume in addition to (49) that the function \
satisfies Dini condition

|(\, x) log
1
x

=o(1), x � 0. (87)

Proposition 11. For a weight function W, which satisfies the Dini condi-
tion (87), the orthogonal polynomials .n are uniformly bounded on 2: :

Mn =
def

max
2:

|.n(ei�)|=O(1), n � �. (88)

Proof. From the Bernstein�Korous identity (77) with z=ei�0 # 2: , and
(66) we derive

}.n(ei�0)&
}n

}n(0q)
.n(ei�0; 0q)}�C14Mn| \1

n
, \+ In , (89)

where

In =
def |

2?&:

:
|Kn(ei�0, e i�; 0q)|

d�

- cos2(:�2)&cos2(��2)
.
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Somewhat tedious manipulations with the Christoffel kernel Kn based on
the Christoffel�Darboux formula and explicit expressions for Akhiezer's
polynomials and their reversed (see (22) and (31)) end up with the equality

Kn(ei�0, ei�; 0q)=
F1(ei|)

ei(|&|0)&1
+

F2(ei|)
ei|&ei|0

,

Fj (ei|)=Fj (ei|, ei|0, n), j=1, 2,

where, as usual, ei�=h(ei|), ei�0=h(ei|0) and

sin
:
2

F1(ei|) =
def ei|0q(e i|) ei|00q(ei|0)[w(e&i|) w(e&i|0)]n&1

&0q(e&i|) 0q(e&i|0)[w(ei|)w(ei|0)]n&1

sin
:
2

F2(ei|) =
def ei|0q(e i|) 0q(e&i|0)[w(e&i|) w(e i|0)]n&1

&0q(e&i|) ei|00q(ei|0)[w(ei|) w(e&i|0)]n&1.

By the change of variables formula (19) we have

In �C15 |
?

0 {
|F1(ei|)|

|ei(|&|0)&1|
+

|F2(e i|)|
|e i|&ei|0|= d|

=C15 |
?

0

|F1(ei|)|+|F2(ei|)|
|e i|&ei|0|

d|. (90)

The rest is standard, if we take into account that for j=1, 2

Fj (ei|0)=0, |F j (v)|=O(1), |F $j (v)|=O(n), n � �

uniformly on the unit circle (cf. (62) and (86)). Indeed,

|
?

0

|Fj (e i|)|
|ei|&e i|0|

d|�|
||&|0|�1�n

O(n) d|+|
||&|| >1�n

O(1) d|
|ei|&ei|0|

�C16 \1+log
1
n+ .

Thus (89) takes the form

}.n(ei�0)&
}n

}n(0q)
.n(ei�0; 0q)}�C16 Mn| \1

n
, \+\1+log

1
n+ . (91)
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The Dini condition (87) now appears on the scene

Mn \1&C16| \1
n

, \+\1+log
1
n++�C17 ,

which yields (88). K

The following result, which serves to connect two orthogonal polyno-
mials systems on 2: , is a direct consequence of (91), (88), and (72).

Corollary 12. Under the Dini condition (87) the limit relation

lim
n � �

(.n(ei�)&.n(ei�; 0q))=0 (92)

holds uniformly on the arc 2: .

To obtain the asymptotic representation for orthonormal polynomials .n

on 2: , a somewhat more restrictive assumption on the function \, than
(87), is required.2 We call it the Zygmund condition:

|
?&:

0

|(x, \)
x

dx<�. (93)

A simple inequality

1
2

|(t, \) log
1
t
�|

- t

t

|(x, \)
x

dx=o(1), t � 0

displays that (93) implies (87).
In light of known expression (47) for Akhiezer's polynomials on the arc

2: Proposition 11 gives rise to the asymptotic formula for orthonormal
polynomials .n on 2: . In fact, we need only to prove that

lim
n � �

g\(ei�1; \q)= g\(ei�1; \) (94)

uniformly on 2: . By (35) and (63), it suffices to show that

lim
n � �

v.p. |
2?&:

: \log
1

\(ei�)
&log

1
\q(ei�)+

_�cos2(:�2)&cos2(�1 �2)
cos2(:�2)&cos2(��2)

d�

sin((�&�1)�2)
=0,
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2 It is known (cf [7]) that in the case of the whole unit circle the Dini condition itself does
not guarantee the uniform asymptotic representation for orthonormal polynomials.



or, in other words,

lim
n � � |

2?&:

: \log
\(ei�1)
\(ei�)

&log
\q(e i�1)
\q(ei�) +

_�cos2(:�2)&cos2(�1 �2)
cos2(:�2)&cos2(��2)

d�

sin((�&�1)�2)
=0 (95)

uniformly on 2: . Without loss of generality, we may assume that :��1�?
and that the integral in (95) is taken over the interval :���?+:1 ,
:1=(?&:)�2 (the rest of the integral tends to zero automatically). Note
that under such assumptions for the kernel function in the right hand side
of (95) a double inequality

C18 ��1&:
�&:

��cos2(:�2)&cos2(�2�2)
cos2(:�2)&cos2(��2)

�C19 ��1&:
�&:

holds.
To prove (95), we proceed in two steps. The first one, which concerns

the integral off a vicinity of the point �1 , is plain. The second one, which
deals with the vicinity of �1 , is a little more elaborate.

Step 1. We have

|
|�1&�|>n&3 \log

\(ei�1)
\(ei�)

&log
\q(ei�1)
\q(ei�)+ �

cos2(:�2)&cos2(�1�2)
cos2(:�2)&cos2(��2)

d�

sin((�&�1)�2)

�C20| \1
n

, \+ |
|�1&�|>n&3 ��1&:

�&:
d�

|�&�1 |

�C21| \1
n

, \+\1+log
1
n+=o(1), n � �.

Step 2. Let us rearrange the terms in the left hand side of (95) and
show that

lim
n � � |

|�&�1|�n&3 \log
1

\(ei�1)
&log

1
\(ei�)+

_�cos2(:�2)&cos2(�1 �2)
cos2(:�2)&cos2(��2)

d�

sin((�&�1)�2)
=0, (96)

lim
n � � |

|�&�1|�n&3 \log
1

\q(ei�1)
&log

1
\q(ei�)+

_�cos2(:�2)&cos2(�1 �2)
cos2(:�2)&cos2(��2)

d�

sin((�&�1)�2)
=0. (97)
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To prove (96), we use the relation

} log
1

\(ei�1)
&log

1
\(ei�) }�C22|( |�&�1 |, \), (98)

which is a direct consequence of (49). Let �n, 1 =
def

max(�1&n&3, :). Then,

} |
�1

�n, 1
\log

1
\(ei�1)

&log
1

\(ei�)+ �
cos2(:�2)&cos2(�1 �2)
cos2(:�2)&cos2(��2)

d�

sin((�&�1)�2) }
�C23 |

�1

�n, 1

|(�1&�, \)
�1&� �1+

�1&�

�&:
d�

�C23 |
�1

�n, 1

|(�1&�, \)
�1&�

d�+C23 |
�1

�n, 1

|(�1&�, \)

- (�1&�)(�&:)
d�

=C23 |
�1&�n, 1

0

|(x, \)
x

dx+C23 |
�1&�n, 1

0

|(x, \)

- x(�1&:&x)
dx

=I1+I2 .

Since 0��1&�n, 1�n&3, we see that

I1�C23 |
n&3

0

|(x, \)
x

dx, n � �.

Next, if �n, 1=:��1&n&3, the, putting b=�1&:�n&3, we get

I2 =C23 |
b

0

|(x, \)

- x(b&x)
dx=C23 |

1

0

|(by, \)

- y(1& y)
dy

�C24|(b, \)�C24|(n&3, \).

If, on the other hand, �n, 1=�1&n&3�:, then

I2=C23 |
n&3

0

|(x, \)

- x(b&x)
dx=C23 |

1

0

|(n&3y, \)

- y(1& y)
dy�C24|(n&3, \).

Hence by Zygmund's condition

} |
�1

�n, 1
\log

1
\(ei�1)

&log
1

\(ei�)+ �
cos2(:�2)&cos2(�1 �2)
cos2(:�2)&cos2(��2)

d�

sin((�&�1)�2) }
�C24 {|

n&3

0

|(x, \)
x

x+|(n&3, \)==o(1).
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For the second part of the integral in (96) we have

} |
�1+n&3

�1
\log

1
\(ei�1)

&log
1

\(ei�)+ �
cos2(:�2)&cos2(�1�2)
cos2(:�2)&cos2(��2)

d�

sin((�&�1)�2) }
�C24 |

n&3

0

|(x, \)
x

dx,

and thus (96) is verified.
Turning to (97) we shall establish first an inequality, which is similar to

(98). The relations (64) and (62) imply

} 1
\q(ei�1)

&
1

\q(ei�) }
=

2
sin(:�2) } |0q(ei|)|2 sin2 �

2
&|0q(ei|1)| 2 sin2 �1

2 }
�

2
sin(:�2) \ |0q(ei|)| 2 } sin2 �

2
&sin2 �1

2 }
+sin2 �1

2
| |0q(ei|)| 2&|0q(ei|1)| 2|+

�C25( |�&�1 |+|0q(ei|)&0q(ei|1)| )

�C25( |�&�1 |+max |0$q | |ei|&ei|1| ).

Next, it is not hard to deduce from (9) that

|ei|&ei|1|�C26 - |�&�1 |.

Thus, thanks to (86), we come to the conclusion (cf. (98))

} log
1

\q(ei�1)
&log

1
\q(ei�) }�C27n - |�1&�|. (99)

Further calculations in much the same way as above in Step 1 lead to the
bound

|
|�&�1|�n&3 \log

1
\q(ei�1)

&log
1

\q(ei�)+
_�cos2(:�2)&cos2(�1 �2)

cos2(:�2)&cos2(��2)
d�

sin((�&�1)�2)
�C28n&1�2,

which completes the proof of (97).
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We are now in a position to sum up the results, obtained above, in the
following statement.

Theorem 13. Let the weight function W satisfy (48), (49), and
Zygmund's condition (93). Then for the orthonormal polynomials .n the
asymptotic representation

.n(ei�)=
e&i*

- 1&sin(:�2)&e&i(��2)
- 1+sin(:�2)

2i sin(��2)

_exp {in \�

2
&*+= g&(ei�; \)

+
ei*

- 1&sin(:�2)&e&i(��2)
- 1+sin(:�2)

2i sin(��2)

_exp {in \�

2
+*+= g+(ei�; \)+o(1)

holds uniformly on the arc 2: .
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